Time	Essential Questions/Content	Standards/Skills	Assessments
September - October	 Unit 1: Design and Modeling What is engineering? What is technology? What is the purpose of a portfolio for a student? For an engineer? Why is it important for engineers to document their work in their engineering notebook? How are our lives impacted by engineers? What is the difference between an invention and an innovation? How does the use of technology affect the way you live? Introduction to engineering Engineering careers Engineers notebooks 	 Define engineering and its impact Define technology and its impact Organize an engineer's notebook Identify engineering careers 	 Engineers notebook Engineering Careers project
October - November	 Unit 2: The Design Process What is the design process and how is it used? Why is brainstorming important when modifying or improving a product? Why do people work in teams when solving design problems? What is meant by constraints and criteria? What is a design brief? When and why is it used? What is a decision matrix? When and why is it used? Why are design elements considered when engineers and designers invent or innovate a product? Design process overview Design elements 	 Understand the design process Understand design elements and their significance 	 Furniture design brief Notebook check

Time	Essential Questions/Content	Standards/Skills	Assessments
November	 Unit 3: Measurement Should the United States convert to all metric measuring or continue to use both systems? Why don't we use such measurement forms as the hand span, cubit, and pace very often? Why are precision measuring tools not always accurate? Standard and metric measurement Precision measurement 	 Understand standard and metric systems of measurement Measure accurately to 16ths of an inch 	 Measurement activity worksheets Measurement lab (Air Racer)
November - December	 Unit 4: Sketching and Dimensioning What are pictorial drawings and how are they used by engineers? What is an orthographic drawing and how is it used by engineers? Why is it important to follow the "rules" of sketching and dimensioning? Sketching techniques Language of sketching Orthographic projection Dimensioning 	 Demonstrate sketching techniques Understand the importance of accurate sketching Understand dimension 	 Language of sketching activity Orthographic Projection activity Dimensioning activity Notebook check

Time	Essential Questions/Content	Standards/Skills	Assessments
January - February	 Unit 5: Design for Production Why would engineers use three-dimensional (3D) modeling when solving technological problems? How do assembly constraints differ from geometric and numeric constraints? What is the difference between a hand-drawn sketch, a working drawing, and a 3D model? What is the difference between a part file (.ipt), an assembly file (.iam), and a working drawing (.idw)? What is the difference between a model, a mockup, and a prototype? What purpose do annotations serve in an assembly drawing? Why is it important to follow the design process when creating a solution to a problem? Why are teams of people used to solve problems? Descriptive geometry Coordinate systems Computer modeling fundamentals Inventor software 	 Understand descriptive geometry and the coordinate plane. Use Inventor Understand IPT - basic parts files Understand IAM - the constraint system and assemblies Produce assembling drawings Understand the purpose of IDW - working drawings and annotation of drawings 	 Block sketch activity Intro to Inventor quiz Title block Sketch plane cube Reverse engineer Peg board toy parts Peg board toy assembly Peg board toy IDW Playground design brief Playground design IPT, IAM, IDW Engineer's notebook

Time	Essential Questions/Content		Standards/Skills		Assessments
March - April	 Unit 6: Science of Technology I What is the purpose of using a simple or compound machine? What is the difference between a simple and a compound machine? If energy cannot be created or destroyed, why do we need to be concerned about our energy sources? What is the relationship between potential energy and kinetic energy? How do subsystems interact to create a system? Why is the design process used when creating new products? Simple machines Compound machines Energy conservation Kinetic vs. potential energy 	•	Understand the six simple machines and how they are used Understand how simple machines make complex devices Understand kinetic vs. potential energy	•	Simple machines handout Simple machines scavenger hunt Simple machines exploration (group work) Energy lab
April - May	Unit 7: Science of Technology II Design process review Roller Coaster Mania project Systems and subsystems Rube Goldberg Power tools Hand tools	•	Understand the design process Understand systems and subsystems Use power and hand tools safely	•	Systems worksheet Roller Coaster project/rubric Rube Goldberg device/rubric Safety test Machine and hand tool test Notebook check

Time	Essential Questions/Content	Standards/Skills	Assessments
May - June	 Unit 8: Dragster Fabrication What are templates? What is drag? How does the car's shape and texture effect drag? How does drag affect a car's speed? Templates Drag Drag Effects Constraints 	 Literacy Assess how point of view or purpose shapes the content and style of the text. Integrate and evaluate content presented in diverse formats and media, including visually and quantitatively, as well as in words. Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience. Use technology, including the Internet, to produce and publish writing and to interact and collaborate with others. Gather relevant information from multiple print and digital sources, assess the credibility and accuracy of each source, and integrate the information while avoiding plagiarism. Math Apply properties of operations as strategies to add, subtract, factor, and explain linear expressions with rational coefficients. Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale. Describe the two dimensional figures that result from slicing three dimensional figures, as in plane sections. 	 Car fabrication Finishing Scale and constraints Performance and drag coefficient