	METEOROLOGY NAME	
IIN	INSTRUCTOR DATE / / LAB: ADIABATIC TEMPERATURE CHANGE	
	Materials: Fizz-Keeper, 1-L plastic soft-drink bottle, thermometer that fits in the bott thermometers are easy to read), water, match, (optional: flexible wire and tape).	le (liquid crystal
1.	 Place the thermometer in the dry bottle. When performing an activity that uses temperature as a variable, why should the bot little as possible? 	
2.	 2. Screw the Fizz-Keeper tightly onto the mouth of the bottle. Record the temperature inside Starting temperature	the bottle.
3.	 Pump the Fizz-Keeper 60 times. Record the temperature after pumping. Temperature after pumping Did the temperature increase or decrease? Why do you believe this happened? 	
4.	 4. Pump the Fizz-Keeper an additional 20 times and record any further changes in temperature Temperature after pumping 	
5.	 Unscrew the Fizz-Keeper. After several minutes record the temperature of the air inside the Temperature after removing Fizz-Keeper Did the temperature increase or decrease? Why do you believe this happened? 	
6.	 6. Remove the thermometer and pour a small amount of water into the bottle. Swirl the water bottle for 20 seconds, then pour out the water. What gases are probably present in the bottle? 	around inside the
7.	 7. Screw the Fizz-Keeper tightly onto the mouth of the bottle and pump the Fizz-Keeper 60 tremove the Fizz-Keeper. Is anything visible in the "space" of the bottle? If so, what? 	
8.	 8. Light a match. After it burns briefly, blow out the flame, quickly drop the smoking match and screw the Fizz-Keeper tightly onto the bottle. Can any particles be seen in the "space" of the bottle? 	
9.	9. Pump the Fizz-Keeper 60 times then quickly release the pressure. Look carefully for any ch• What is visible in the "space" of the bottle?	_
	• Summarize the conditions (pressure and temperature changes) and materials needed in "cloud."	order to create a

How can this happen naturally in the atmosphere?