Weather Variables

Unit Review

Name

1. Be sure you know the meaning of the following words. Quiz each other and place a check next to those you know.

air pressure	millibar	
barometer	pressure gradient	
barometric pressure	relative humidity	
condensation	sling psychrometer	
dew point	weather station model	
knot		

2. Review the weather station model and data below. Record each weather observation in the proper space: Be sure to include units

3. For each of the station models below record the current air pressure and the pressure 3 hours ago.

4. Convert the following measurements using the proper page from the *Earth Science Reference Tables*:

 $27^{\circ}F = __{\circ}C \qquad 52^{\circ}F = __{\circ}C \qquad 28.92^{\circ} = __{mb} \qquad 30.35^{\circ} = __{mb} \qquad 5^{\circ}C = __{\circ}F \qquad 22^{\circ}C = __{\circ}F \qquad 998.0mb = __{\circ} \qquad 1033.0mb = __{mb}$ 5. Determine the dew point and relative humidity based on the given wet and dry bulb temperatures. Dry bulb = 22^{\circ}C \qquad Dry bulb = 16^{\circ}C \qquad Wet bulb = 16^{\circ}C \qquad Wet bulb = 16^{\circ}C \qquad Dew Point = __{mb} \qquad Dew P

 Relative Humidity = ____
 Relative Humidity = ____

Why doesn't the wet bulb temperature drop when the relative humidity is 100%?_____

What might occur when the temperature and the dew point are equal?_____

6. For each pair of weather variables draw the graph that describes the relationship between them and explain why that relationship exits.

		Explanation:
pro		
essi		
ıre		
	temperature	
_		Explanation:
pre		
sui		
·e		
	dew point	
rel		Explanation:
ativ		·
/e h		
um		
idit		
Y		
	temperature	

- 7. Use the map below to complete the following:
 - a. Locate and label at least one high (H) and one low pressure (L) system.
 - b. Heavily shade an area that is likely experiencing cloudy or rainy weather.
 - c. Lightly shade in an area that likely has strong winds.
 - d. Calculate the pressure gradient from point A to B.
 - e. Calculate the pressure gradient from point C to D.

calculate pressure gradients here (be sure to include units)

8. What instrument is used to measure each of the following:

 air pressure
 wind speed

 dew point
 relative humidity

9. Using arrows show how wind will circulate around the high (H) and low (L) pressure systems.

10. The diagram below represents a beach made of granite sand on a typical sunny summer day. Complete the following items that help to explain why wind blows in coastal regions.

- a. Calculate the number of calories needed to raise 5 grams of the granite sand by 5°C.
- b. Next calculate the number of calories needed to raise 5 grams of the water by 5°C.
- c. Label which likely become warmer and which will be cooler.
- d. Label where the higher (H) and lower (L) pressure air will be found.
- e. Finally use an arrow to show the direction the wind will likely blow.

