AP CALCULUS BC
“Cheat Sheet”

Differentiation Formulas
Important Note: Remember the chain rule whenever you take a derivative!  For example, .  When you look at all these derivatives, remember the chain rule!

1. 
2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 
   Chain Rule



Integration Formulas

1. 

2. 

3. 

4. 

5. 

6. 
     Note: You can figure this out using uv substitution
7. 

8. 



Note: You can figure out  #9 and #10 below using substitution techniques

9. 
    
10. 

11. 

12. 

13. 

14. 

15. 

16. 



Formulas and Theorems
1.	Limits and Continuity:  


	A function  is continuous at    if  
i).	f(a) exists

ii).	 exists

iii).			
	Otherwise,  f is discontinuous at  x = a.

	The limit  exists if and only if both corresponding one-sided limits exist and are equal – that is,

		
2. Even and Odd Functions
1. 


A function  is even if for every  in the function’s domain.
Every even function is symmetric about the y-axis.
2. 


A function  is odd if  for every  in the function’s domain.
Every odd function is symmetric about the origin.

4.	Intermediate-Value Theorem



A function   that is continuous on a closed interval  takes on every value between .




Note:  If  is continuous on  and  and   differ in sign, then the equation


            has at least one solution in the open interval .



5.	Limits of Rational Functions as 


		i).	 if the degree of  

				Example: 


		ii).	is infinite if the degrees of 

				Example:  


		iii).	is finite if the degree of  
			

				Example:  
6. Horizontal and Vertical Asymptotes
1. 

A line  is a horizontal asymptote of the graph  if either

.
2. 

A line   is a vertical asymptote of the graph   if either

 .
7. Average and Instantaneous Rate of Change






i).	Average Rate of Change:  If    are points on the graph of , then the average rate of change of  with respect to  over the interval  is  .






ii).	Instantaneous Rate of Change:  If   is a point on the graph of  , then the instantaneous rate of change of   with respect to   at   is  .
8. Definition of Derivative


   or  

The latter definition of the derivative is the instantaneous rate of change of   with respect to x  at  x = a.
Geometrically, the derivative of a function at a point is the slope of the tangent line to the graph of the function at that point.


9. The Number e as a limit  (This is cool to know, but not essential)

i).	

ii).	
10. Rolle’s Theorem (Note: This is simply a special case of the MVT below)







If  is continuous on   and differentiable on   such that  , then there is at least one number in the open interval  such that .
11. Mean Value Theorem (MVT)






If  is continuous on   and differentiable on  , then there is at least one number   in   such that  .

12. Extreme-Value Theorem (EVT)




If  is continuous on a closed interval  ,  then   has both a maximum and minimum on  .

13. Intermediate Value Theorem (IVT)
If a continuous function, f, with an interval, [a, b], as its domain, takes values f(a) and f(b) at each end of the interval, then it also takes any value between f(a) and f(b) at some point within the interval.
14. 
Absolute Mins and Maxs: To find the maximum and minimum values of a function  ,  locate
1. 

the points where   is zero or  where   fails to exist.
2. 
the end points,  if any, on the domain of  .
3. 
Plug those values into to see which gives you the max and which gives you this min values (the x-value is where that value occurs)


Note:  These are the only candidates for the value of   where  may have a maximum or a
           minimum.

15. 


Increasing and Decreasing: Let be differentiable for  and continuous for a  ,
1. 




If   for every   in  ,  then   is increasing on  .
2. 




If   for every   in  ,  then   is decreasing on  .


16.	Concavity: Suppose that exists on the interval 
1. 



If  in , then is concave upward in .
2. 



If in , then is concave downward in .






To locate the points of inflection of , find the points where  or where  fails to exist.  These are the only candidates where  may have a point of inflection. Then test these points to make sure that  on one side and  on the other.


17.	If a function is differentiable at point  , it is continuous at that point.  The converse is false, 
	in other words, continuity does not imply differentiability.
18.	Local Linearity and Linear Approximations



	The linear approximation to  near  is given by  for


	 sufficiently close to .


	To estimate the slope of a graph at a point – just draw a tangent line to the graph at that point.  Another way is (by using a graphing calculator) to “zoom in” around the point in question until the graph “looks” straight.  This method almost always works.  If we “zoom in” and the graph looks straight at a point, say , then the function is locally linear at that point.



	The graph of  has a sharp corner at  x = 0.  This corner cannot be smoothed out by “zooming in” repeatedly.  Consequently, the derivative of  does not exist at  x = 0, hence, is not locally linear at  x = 0.

19.	Dominance and Comparison of Rates of Change

Logarithm functions grow slower than any power function .

Among power functions, those with higher powers grow faster than those with lower powers.


All power functions grow slower than any exponential function .

Among exponential functions, those with larger bases grow faster than those with smaller bases.


We say, that as :




1.   grows faster than  if  or if .






       If   grows faster than  as , then  grows slower than  as .




2.    and  grow at the same rate as  if   (L is finite and nonzero).
 	For example,




1.  grows faster than  as  since 




2.   grows faster than  as  since 




3.   grows at the same rate as  as  since 

To find some of these limits as, you may use the graphing calculator.  Make sure that an appropriate viewing window is used.



20.	L’Hôpital’s Rule




If   is of the form  , and if   exists, then  .

21.	Inverse function
1. 








If are two functions such that  for every  in the domain of   and   for every  in the domain of  ,  then and  are inverse functions of each other.
2. 
A function   has an inverse if and only if no horizontal line intersects its graph more than once.
3. 

If   is strictly either increasing or decreasing in an interval, then  has an inverse.
4. 










If   is differentiable at every point on an interval , and on , then  is differentiable at every point of the interior of the interval   and  if the point  is on , then the point is on ; furthermore .

22.	Properties of 
1. 

The exponential function  is the inverse function of  .
2. 
The domain is the set of all real numbers,  .
3. 
The range is the set of all positive numbers, .
4. 

and 
5. 

6. 

 is continuous, increasing, and concave up for all  .
7. 

   and  .
8. 


, for for all  .


23.	Properties of  
1. 

The domain of  is the set of all positive numbers, .
2. 

The range of  is the set of all real numbers, .
3. 
 is continuous and increasing everywhere on its domain.
4. 
.
5. 
.
6. 
.
7. 

.
8. 
.
9. 

10. 

and 

24.	Know Left-hand, right-hand, and midpoint Riemann Sums AND how to use trapezoids to approximate signed area under a curve.
 
25.	Definition of Definite Integral as the Limit of a Sum











Suppose that a function is continuous on the closed interval .  Divide the interval into equal subintervals, of length  .  Choose one number in each subinterval, in other words, in  the first,  in the second, …,  in the ,…, and  in the .  Then .

26.	Properties of the Definite Integral



	Let   and   be continuous on  .


	  i).   for any constant .

	  ii).   

	  iii).  


	 iv).   ,  where  is continuous on an interval

	           containing the numbers  .


	v).   If  is an odd function, then 


	vi).  If  is an even function, then 



	vii).  If  on , then  



	viii).  If  on , then  


27.  	Fundamental Theorem of Calculus:

.


28.	Second Fundamental Theorem of Calculus:


	 or     	        

29.         Velocity, Speed, and Acceleration
1.  The velocity of an object tells how fast it is going and in which direction.  Velocity is an instantaneous rate of change. If velocity is positive (graphically above the “x”-axis), then the object is moving away from its point of origin. If velocity is negative (graphically below the “x”-axis), then the object is moving back towards its point of origin. If velocity is 0 (graphically the point(s) where it hits the “x”-axis), then the object is not moving at that time.

2.  The speed of an object is the absolute value of the velocity, .  It tells how fast it is going disregarding its direction.
     The speed of a particle increases (speeds up) when the velocity and acceleration have the same signs.  The speed decreases (slows down) when the velocity and acceleration have opposite signs.

3.  The acceleration is the instantaneous rate of change of velocity – it is the derivative of the velocity – that is, .  Negative acceleration (deceleration) means that the velocity is decreasing (i.e. the velocity graph would be going down at that time), and vice-versa for acceleration increasing.  The acceleration gives the rate at which the velocity is changing.

     Therefore, if  x  is the displacement of a moving object and  t  is time, then:

i) velocity = 

ii) acceleration = 

iii)  

iv)  




Note:  The average velocity of a particle over the time interval from  to another time  t, is Average Velocity = , where  is the position of the particle at time  t or  if given the velocity function.




30.	The average value of  on  is  .

31.	Area Between Curves






If   and   are continuous functions such that  on , then area between the curves is  or .


32.  	Integration using “U-substitution”
Step one:  Be sure this new idea applies, i.e. check to see whether the expression looks as though it could have arisen from a chain rule being applied.
Step two:  Off to the side of the original integration problem, write down what you are going to make u equal to.  Often this may be the part of the expression that has the weird exponent.
Step three:  Take the derivative of the  “u-equals” equation with respect to x 
Step four: Look at what you have as u- equals and its derivative and the original expression you were trying to integrate…those pieces should work in a way that now changes all the variables in the original to either a u or a du.  Now it should be something you can integrate!  For definite integrals, be sure to change your limits if integration to correspond with your new function in terms of u.

33.	Integration By “Parts”





If  and  and  if  and  are continuous, then  .



Note:  The goal of the procedure is to choose  and    so that   is easier to solve
           than the original problem.
Suggestion:  













	When “choosing” ,  remember  L.I.A.T.E, where L is the logarithmic function, I is an inverse trigonometric function, A is an algebraic function, T is a trigonometric function, and E is the exponential function.  Just choose  as the first expression in L.I.A.T.E (and  will be the remaining part of the integrand).  For example, when integrating , choose  since L comes first in L.I.A.T.E, and  .  When integrating  , choose , since  is an algebraic function, and A comes before E in L.I.A.T.E, and .  One more example, when integrating , let , since I comes before A in L.I.A.T.E, and .


34.	Integration using partial fraction decomposition
[image: ][image: ]When integrating a rational function, first see if U-sub works or, if not, determine whether it’s in the form of an inverse trig integral.  If neither of these work, you may re-write the function as a sum of fractions.  Important: Be sure to first do polynomial long division if possible.  See the example below:
35.	Improper Integral

 is an improper integral if
1. 
 becomes infinite at one or more points of the interval of integration, or
2. one or both of the limits of integration is infinite, or
3. both (1) and (2) hold.


36.	Volume of Solids of Revolution (rectangles drawn perpendicular to the axis of revolution)
· 
Revolving around a horizontal line (y=# or x-axis) where :

 
· 

Revolving around a vertical line (x=# or y-axis) where : 

37.	Volume of Solids with Known Cross Sections
1. 

For cross sections of area  , taken perpendicular to the x-axis, volume = .
Cross-sections {if only one function is used then just use that function, if it is between two functions use top-bottom} mostly all the same only varying by a constant, with the only exception being the rectangular cross-sections:
Note: You don’t need to memorize these; just think about how you’d find the area of each cross-section and go from there…but here are some common ones.

· Square cross-sections:


· Isosceles Right Triangle cross-sections (leg in the xy plane):


· Semi-circular cross-sections:


· Rectangular cross-sections (height function or value must be given or articulated somehow – notice no “square” on the {top – bottom} part):


2. 

[bookmark: _GoBack]For cross sections of area  , taken perpendicular to the y-axis, volume = .

38.	Solving Differential Equations:  Graphically and Numerically
Slope Fields


At every point  a differential equation of the form  gives the slope of the member of the family of solutions that contains that point.  A slope field is a graphical representation of this family of curves.  At each point in the plane, a short segment is drawn whose slope is equal to the value of the derivative at that point.  These segments are tangent to the solution’s graph at the point.

The slope field allows you to sketch the graph of the solution curve even though you do not have its equation.  This is done by starting at any point (usually the point given by the initial condition), and moving from one point to the next in the direction indicated by the segments of the slope field.

Know how to solve separable differential equations.

Know how to use the given differential equation and its derivative (i.e. the 2nd derivative) to describe the slope and concavity of a function or determine whether a point is a max or min.

Euler’s Method




Euler’s Method is a way of approximating points on the solution of a differential equation .  The calculation uses the tangent line approximation to move from one point to the next.  That is, starting with the given point  – the initial condition, the point  approximates a nearby point on the solution graph.  This aproximation may then be used as the starting point to calculate a third point and so on.  The accuracy of the method decreases with large values of .  The error increases as each successive point is used to find the next.  Calculator programs are available for doing this calculation.

Logistics
	1.     Rate is jointly proportional to its size and the difference between a fixed positive number (L) and its size.



			  OR which yields


					   through separation of variables

	2.     ;  L = carrying capacity (Maximum);  horizontal asymptote


	3.     y-coordinate of inflection point is , i.e. when it is growing the fastest (or max rate).

39.         Definition of Arc Length






If the function given by  represents a smooth curve on the interval , then the arc length of  between and  is given by .

40.	Parametric Form of the Derivative


If a smooth curve C is given by the parametric equations , then the slope of the curve C at .

Note:  The second derivative, .




41.	Arc Length in Parametric Form








If a smooth curve C is given by  and these functions have continuous first derivatives with respect to  for  , and if the point  traces the curve exactly once as  moves from ,  then the length of the curve is given by .                         

42.	Polar Coordinates
1. 

Cartesian vs. Polar Coordinates.  The polar coordinates  are related to the Cartesian coordinates  as follows:




2. 


To find the points of intersection of two polar curves, find  satisfying the first equation for which some points  satisfy the second equation.  Check separately to see if the origin lies on both curves, i.e. if can be 0.  Sketch the curves.
3. 




Area in Polar Coordinates:  If  is continuous and nonnegative on the interval , then the area of the region bounded by the graph of  between the radial lines   and  is given by



4.     Derivative of Polar function:  Given  , to find the derivative, use parametric equations.


		      and      .


			Then     	

5.     Arc Length in Polar Form:    






43.	Sequences and Series
1. 





If a sequence  has a limit , that is, , then the sequence is said to converge to .  If there is no limit, the series diverges.  If the sequence  converges, then its limit is unique.  Keep in mind that .  These limits are useful and arise frequently.

2. 





The harmonic series  diverges;  the geometric series  converges to   if  and diverges if   and .

3. 


The p-series  converges if   and diverges if  .

4. 




Limit Comparison Test:  Let  and   be a series of nonnegative terms, with  for all sufficiently large  , and suppose that  .  Then the two series either both converge or both diverge.

5. 
Alternating Series:  Let   be a series such that
i) the series is alternating
ii) 

 for all , and
iii) 
 
Then the series converges.


Alternating Series Remainder:  The remainder  is less than (or equal to) the first neglected term

						


6. 
The n-th Term Test for Divergence:  If , then the series diverges. 

Note that the converse is false, that is, if , the series may or may not converge. 


7. 





A series  is absolutely convergent if the series  converges.  If   converges, but  does not converge, then the series is conditionally convergent.  Keep in mind that if  converges, then converges.

8. 





Comparison Test:  If   for all sufficiently large ,  and  converges, then  converges.  If  diverges, then diverges.

9. 






Integral Test: If  is a positive, continuous, and decreasing function on  and let .  Then the series  will converge if the improper integral  converges.  If the improper integral  diverges, then the infinite series  diverges.


10. 
Ratio Test:  Let  be a series with nonzero terms.
i) 
If , then the series converges absolutely.
ii) 
If , then the series is divergent.
iii) 
If  , then the test is inconclusive (and another test must be used).


11. Power Series:  A power series is a series of the form





  or  in which the center  and the coefficients  are constants.  The set of all numbers  for which the power series converges is called the interval of convergence.


12. 




Taylor Series:  Let  be a function with derivatives of all orders throughout some intervale containing  as an interior point.  Then the Taylor series generated by  at  is   


The remaining terms after the term containing the derivative can be expressed as a remainder to Taylor’s Theorem: 


Lagrange’s form of the remainder: , where . 


The series will converge for all values of  for which the remainder approaches zero as .

Alternating Series Remainder: To find the maximum error between a partial sum and the actual sum of a convergent alternating series, simply look at the first term that was left out.  In other words, if you’re finding the partial sum of the first 15 terms, then the maximum error is equal to the 16th term.
 
13. Frequently Used Series and their Interval of Convergence
Note: DO memorize these!!  It will save time!


, 



, 



, 



, 


Trigonometric Formulas 
1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 



18. 
Note: Trig identities are useful for your future but not necessary on the AP
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