


A cylindrical barrel with a diameter of 2 feet contains collected rainwater, as shown in the figure above. The water drains out through a valve (not shown) at the bottom of the barrel. The rate of change of the height *h* of the water in the barrel with respect to time *t* is modeled by  $\frac{dh}{dt} = -\frac{1}{10}\sqrt{h}$ , where *h* is measured in feet and *t* is measured in seconds. (The volume *V* of a cylinder with radius *r* and height *h* is  $V = \pi r^2 h$ .)

- (a) Find the rate of change of the volume of water in the barrel with respect to time when the height of the water is 4 feet. Indicate units of measure.
- (b) When the height of the water is 3 feet, is the rate of change of the height of the water with respect to time increasing or decreasing? Explain your reasoning.
- (c) At time t = 0 seconds, the height of the water is 5 feet. Use separation of variables to find an expression for *h* in terms of *t*.