x	$g(x)$	$g^{\prime}(x)$
-5	10	-3
-4	5	-1
-3	2	4
-2	3	1
-1	1	-2
0	0	-3

Graph of h

Let f be the function defined by $f(x)=\cos (2 x)+e^{\sin x}$.
Let g be a differentiable function. The table above gives values of g and its derivative g^{\prime} at selected values of x.

Let h be the function whose graph, consisting of five line segments, is shown in the figure above.
(a) Find the slope of the line tangent to the graph of f at $x=\pi$.
(b) Let k be the function defined by $k(x)=h(f(x))$. Find $k^{\prime}(\pi)$.
(c) Let m be the function defined by $m(x)=g(-2 x) \cdot h(x)$. Find $m^{\prime}(2)$.
(d) Is there a number c in the closed interval $[-5,-3]$ such that $g^{\prime}(c)=-4$? Justify your answer.

