(a) $h^{\prime}(2)=\frac{2}{3}$
(b) $a^{\prime}(x)=9 x^{2} h(x)+3 x^{3} h^{\prime}(x)$
$a^{\prime}(2)=9 \cdot 2^{2} h(2)+3 \cdot 2^{3} h^{\prime}(2)=36 \cdot 4+24 \cdot \frac{2}{3}=160$
(c) Because h is differentiable, h is continuous, so $\lim _{x \rightarrow 2} h(x)=h(2)=4$.

Also, $\lim _{x \rightarrow 2} h(x)=\lim _{x \rightarrow 2} \frac{x^{2}-4}{1-(f(x))^{3}}$, so $\lim _{x \rightarrow 2} \frac{x^{2}-4}{1-(f(x))^{3}}=4$.
Because $\lim _{x \rightarrow 2}\left(x^{2}-4\right)=0$, we must also have $\lim _{x \rightarrow 2}\left(1-(f(x))^{3}\right)=0$.
Thus $\lim _{x \rightarrow 2} f(x)=1$.

Because f is differentiable, f is continuous, so $f(2)=\lim _{x \rightarrow 2} f(x)=1$.

Also, because f is twice differentiable, f^{\prime} is continuous, so
$\lim _{x \rightarrow 2} f^{\prime}(x)=f^{\prime}(2)$ exists.

Using L'Hospital's Rule,
$\lim _{x \rightarrow 2} \frac{x^{2}-4}{1-(f(x))^{3}}=\lim _{x \rightarrow 2} \frac{2 x}{-3(f(x))^{2} f^{\prime}(x)}=\frac{4}{-3(1)^{2} \cdot f^{\prime}(2)}=4$.
Thus $f^{\prime}(2)=-\frac{1}{3}$.
(d) Because g and h are differentiable, g and h are continuous, so $\lim _{x \rightarrow 2} g(x)=g(2)=4$ and $\lim _{x \rightarrow 2} h(x)=h(2)=4$.

Because $g(x) \leq k(x) \leq h(x)$ for $1<x<3$, it follows from the squeeze theorem that $\lim _{x \rightarrow 2} k(x)=4$.

Also, $4=g(2) \leq k(2) \leq h(2)=4$, so $k(2)=4$.
Thus k is continuous at $x=2$.

1 : answer
$3:\left\{\begin{array}{l}1: \text { form of product rule } \\ 1: a^{\prime}(x) \\ 1: a^{\prime}(2)\end{array}\right.$
$\left\{\begin{array}{l}1: \lim _{x \rightarrow 2} \frac{x^{2}-4}{1-(f(x))^{3}}=4 \\ 1: f(2) \\ 1: \text { L'Hospital's Rule } \\ 1: f^{\prime}(2)\end{array}\right.$

1 : continuous with justification

