
AP® CALCULUS AB 2014 SCORING GUIDELINES

Question 6

Consider the differential equation $\frac{dy}{dx} = (3 - y)\cos x$. Let y = f(x) be the particular solution to the differential equation with the initial condition f(0) = 1. The function f is defined for all real numbers.

- (a) A portion of the slope field of the differential equation is given below. Sketch the solution curve through the point (0, 1).
- (b) Write an equation for the line tangent to the solution curve in part (a) at the point (0, 1). Use the equation to approximate f(0.2).
- (c) Find y = f(x), the particular solution to the differential equation with the initial condition f(0) = 1.

1: solution curve

(b) $\frac{dy}{dx}\Big|_{(x, y)=(0, 1)} = 2\cos 0 = 2$

An equation for the tangent line is y = 2x + 1. $f(0.2) \approx 2(0.2) + 1 = 1.4$ 2: $\begin{cases} 1 : \text{tangent line equation} \\ 1 : \text{approximation} \end{cases}$

(c) $\frac{dy}{dx} = (3 - y)\cos x$

$$\int \frac{dy}{3-y} = \int \cos x \, dx$$

$$-\ln|3 - y| = \sin x + C$$

$$-\ln 2 = \sin 0 + C \implies C = -\ln 2$$

$$-\ln|3-y| = \sin x - \ln 2$$

Because
$$y(0) = 1$$
, $y < 3$, so $|3 - y| = 3 - y$

$$3 - y = 2e^{-\sin x}$$

$$y = 3 - 2e^{-\sin x}$$

Note: this solution is valid for all real numbers.

1 : separation of variables

2 : antiderivatives

6: { 1 : constant of integration

1: solves for y

Note: max 3/6 [1-2-0-0-0] if no constant of integration

Note: 0/6 if no separation of variables