Solving Systems of Equations (Word Problems) Two Variables and Two Equations

Directions QUESTIONS 1-4: Follow the steps for solving word problems that you have already been given to solve the following problems. You must write a system of equations and solve algebraically

1) Guy and Jim work at a furniture store. Guy is paid $185 per week plus 3% of his total sales in dollars, \(x \), which can be represented by \(g(x) = 185 + 0.03x \). Jim is paid $275 per week plus 2.5% of his total sales in dollars, \(x \), which can be represented by \(f(x) = 275 + 0.025x \). Determine the value of \(x \), in dollars, that will make their weekly pay the same.

\[
\begin{align*}
185 + 0.030x &= 275 + 0.025x \\
-0.025x &= -0.025x \\
185 + 0.005x &= 275 \\
-185 &= -185 \\
0.005x &= 90 \\
\frac{0.005x}{0.005} &= \frac{90}{0.005} \\
x &= 18,000
\end{align*}
\]

If the sell $18,000, their weekly pay will be the same.

2) During the 2010 season, football player McGee’s earnings, \(m \), were 0.005 million dollars more than those of his teammate Fitzpatrick’s earnings, \(f \). The two players earned a total of 3.95 million dollars. Determine the amount each player earned, in millions of dollars?

\[
\begin{align*}
m &= 0.005 + f \\
m + f &= 3.95
\end{align*}
\]

\[
\begin{align*}
m + f &= 3.95 \\
(0.005 + f) + f &= 3.95 \\
0.005 + 2f &= 3.950 \\
-0.005 &= -0.005 \\
2f &= 3.945 \\
\frac{2f}{2} &= \frac{3.945}{2} \\
f &= 1.9725
\end{align*}
\]

McGee earnings are $1,977,500.

Fitzpatrick’s earnings are $1,972,500.
3) Last week, a candle store received $355.60 for selling 20 candles. Small candles sell for $10.98 and large candles sell for $27.98. How many large candles did the store sell?

Let \(l \) = number of large candles
\(s \) = number of small candles

\[
\begin{align*}
\quad l + s &= 20 \\
10.98s + 27.98l &= 355.60 \\
10.98(20 - l) + 27.98l &= 355.60 \\
21.960 - 10.98l + 27.98l &= 355.60 \\
21.960 + 17l &= 355.60 \\
17l &= 333.64 \\
l &= \frac{333.64}{17} \\
l &= 19.6 \\
s &= 20 - l \\
s &= 20 - 19.6 \\
s &= 0.4
\end{align*}
\]

The store sold 19 large candles.

4) Jacob and Zachary go to the movie theater and purchase refreshments for their friends. Jacob spends a total of $18.25 on two bags of popcorn and three drinks. Zachary spends a total of $27.50 for four bags of popcorn and two drinks. What is the price of one popcorn and the price of one drink (to the nearest cent)?

Let \(p \) = price of one popcorn
\(d \) = price of one drink

Jacob \(\Rightarrow \) \(2p + 3d = 18.25 \)
Zachary \(\Rightarrow \) \(4p + 2d = 27.50 \)

\[
\begin{align*}
-2(2p + 3d = 18.25) &\Rightarrow -4p - 6d = 36.50 \\
4p + 2d &= 27.50 \\
4d &= -9.00 \\
\frac{4d}{4} &= \frac{-9.00}{4} \\
d &= 2.25
\end{align*}
\]

One popcorn costs $5.75.

One drink costs $2.25.
5) Albert says that the two systems of equations shown below have the same solutions.

<table>
<thead>
<tr>
<th>First System</th>
<th>Second System</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2(8x + 9y = 48))</td>
<td>(8x + 9y = 48)</td>
</tr>
<tr>
<td>(-2(12x + 5y = 21))</td>
<td>(-8.5y = -51)</td>
</tr>
</tbody>
</table>

Determine if you agree by solving each system and showing whether the solutions are the same or not.

\[
\begin{align*}
24x + 27y &= 144 \\
-24x - 10y &= -42 \\
\hline
17y &= 102 \\
\frac{17}{17} y &= \frac{102}{17} \\
y &= 6
\end{align*}
\]

\[
\begin{align*}
-8.5y &= -51 \\
\frac{-8.5}{-8.5} y &= \frac{-51}{-8.5} \\
y &= 6
\end{align*}
\]

\[
\begin{align*}
8x + 9y &= 48 \\
8x + 9(6) &= 48 \\
8x + 54 &= 48 \\
-54 &= -54 \\
\hline
8x &= -6 \\
\frac{8}{8} x &= \frac{-6}{8} \\
x &= \frac{-3}{4}
\end{align*}
\]

\[
\begin{align*}
\text{Solution} \quad \left(\frac{-3}{4}, 6 \right)
\end{align*}
\]

\[
\begin{align*}
\text{Solution} \quad \left(\frac{-3}{4}, 6 \right)
\end{align*}
\]

The solution for both systems is \(\left(\frac{-3}{4}, 6 \right) \).