\qquad per \qquad due date \qquad mailbox \qquad

ROLLER COASTER CREATOR LAB

http://content3.jason.org/resource content/content/digitallab/4859/misc content/public/coaster.html -Link

Lab QUESTIONS:

1. What forms of energy are involved in a roller coaster? Circle all that apply.

2. Write down the name of your roller coaster? \qquad
3. How many carts are you selecting for your initial run? \qquad

Directions for labeling sketches.

To receive full credit you must:
(Option colored pencils)
1- Label potential energy spots along the coaster track. Label as follows: For greatest potential ($1^{\text {ST}}$ hill) \rightarrow (PE3) \& then second hill \rightarrow (PE2), (PE1), etc.
2- Label these kinetic energy spots along the coaster track. Label as follows: For highest speed near bottom of 1st hill \rightarrow (KE3), then (KE2), (KE1), etc.
3- Next label at least 2 sections of track where you would expect the greatest dissipated energy transfer or friction zones as \rightarrow (DE-1) \& (DE-2)
4- Record your mass; 1 car $=100 \mathrm{~kg}$, max height \& max velocity in the table.
5 - You will need to try \& "capture" maximum velocity with careful observation. You can simply pause [II] while the cars are rolling down bottom of $1^{\text {st }}$ hill.
A. Time to build to your first roller coaster design. Sketch your design here:

PE= \square KE=
$\mathrm{g}=9.807 \mathrm{~m} / \mathrm{s}^{2}$ g=gravity
4. When your coaster reached the end of the run it... Circle one of the following: Crashed Success! Stuck
5. Record your Hills Loops and Difficulty Score \qquad
6. Record your Screams Top Speed and Stop Accuracy Score \qquad
7. Why do roller coasters crash at the end? Discuss using the following terms (kinetic energy, dissipated energy \& friction). \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
B. Time to build to your second roller coaster design. Sketch your design here:

8. When your coaster reached the end of the run it... Circle one of the following: Crashed Success! Stuck
9. Record your Hills Loops and Difficulty Score \qquad
10. Record your Screams Top Speed and Stop Accuracy Score \qquad
11. What did you modify/engineer differently to change and stop the cars at the offloading platform. Use one or more of the following vocabulary: mass "\# of cars", GPE of hills, slope of track, friction zones. \qquad
\qquad
\qquad
\qquad
\qquad
C. Time to build to your third roller coaster. Sketch your design here:

12. When your coaster reached the end of the run it... Circle one of the following: Crashed Success! Stuck
13. Record your Hills Loops and Difficulty Score \qquad
14. Record your Screams Top Speed and Stop Accuracy Score \qquad
15. Was this coaster a success? Discuss using the following terms (kinetic energy, dissipated energy \& friction.

